Update zu p16-positiven Oropharynxkarzinomen

Michael Herzog Klinik für HNO-Krankheiten, Kopf- und Hals-Chirurgie Medizinische Universität Lausitz – Carl Thiem Cottbus

Agenda

- p16-positive Oropharynxkarzinome im Wandel der TNM-Klassifikationen
- Deeskalation bei p16-positive Oropharynxkarzinomen
- Untersuchung zur chirurgischen Deeskalation auf Basis einer retrospektiven Datenanalyse

Agenda

- p16-positive Oropharynxkarzinome im Wandel der TNM-Klassifikationen
- Deeskalation bei p16-positive Oropharynxkarzinomen
- Untersuchung zur chirurgischen Deeskalation auf Basis einer retrospektiven Datenanalyse

TNM bei HPV-assoziierten Oropharynxkarzinomen

T-Stadien

Tis: Carcinoma in situ **T1**: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder benachbarten Strukturen

T4a: Kieferknochen, Muskelweichteile

T4b: Schädelbasis, A. carotis int., V. jugularis

N-Stadien: klinisch + pathologisch

N0 kein LK N1

1 unilateraler LK < 3cm

N₂a 1 unilateraler LK > 3cm - < 6cm N₂b multiple ipsilaterale LKs < 6cm N2c multiple bilaterale LKs < 6cm

N3 LK > 6cm

UICC

N0 M0 Stadium I T1 Stadium II N0 T2 M0 N1 Stadium III T1 M0 T2 N1 M0 T3 NO, N1 M0 Stadium IVA T1-3 N2 M0 T4a N0-N2 M0 Stadium IVB jedes T N3 M0 T4b jedes N M0 Stadium IVC jedes T jedes N M1

T-Stadien

Tis: Carcinoma in situ **T1**: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder benachbarten Strukturen

T4a: Kieferknochen, Muskelweichteile

T4b: Schädelbasis, A. carotis int., V. jugularis

N-Stadien: klinisch + pathologisch

N0 kein LK
N1 1 unilateraler LK \leq 3cm
N2a 1 unilateraler LK > 3cm - \leq 6cm
N2b multiple ipsilaterale LKs \leq 6cm
N2c multiple bilaterale LKs \leq 6cm
N3 LK > 6cm

UICC

```
Stadium I
                    N0
            T1
                            M0
Stadium II
                    N0
                            M0
            T2
Stadium III
            T1
                    N1
                            M0
                    N1
            T2
                            M0
            T3
                    NO, N1
                            M0
Stadium IVA
            T1-3
                    N2
                            M0
            T4a
                   N0-N2
                            M0
Stadium IVB jedes T
                   N3
                            M0
            T4b jedes N
                            M0
Stadium IVC jedes T jedes N
                            M1
```

TNM 8 seit 2017

p16 - Kleine Änderung des T-Stadiums

p16 +

T4: > 6cm

TNM 8 seit 2017

T-Stadien

Tis: Carcinoma in situ **T1**: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder benachbarten Strukturen

T4a: Kieferknochen, Muskelweichteile

T4b: Schädelbasis, A. carotis int., V. jugularis

N-Stadien: klinisch + pathologisch

N0 kein LK N1 1 unilate

N1 1 unilateraler LK ≤ 3cm

N2a 1 unilateraler LK > 3cm - \leq 6cm N2b multiple ipsilaterale LKs \leq 6cm N2c multiple bilaterale LKs \leq 6cm

N3 LK > 6cm

UICC

Stadium I	T1	N0	M0	
Stadium II	T2	N0	M0	
Stadium III	T1	N1	M0	
	T2	N1	M0	
	T3	N0, N1	M0	
Stadium IVA	T1-3	N2	M0	
	T4a	N0-N2	M0	
Stadium IVB	jedes T	N3	M0	
	T4b	jedes N	M0	
Stadium IVC	jedes T	jedes N	M1	

p16 - Kleine Änderung des T-Stadiums

p16 +

T4: > 6cm

T-Stadien

Tis: Carcinoma in situ **T1**: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

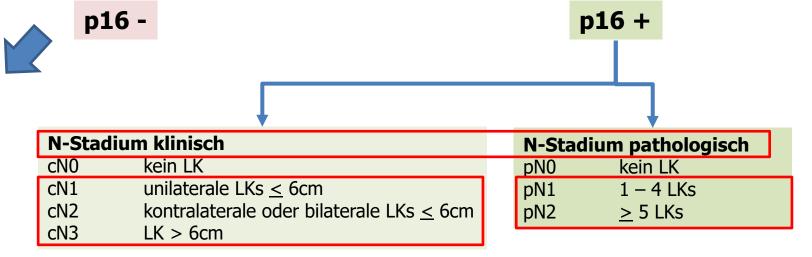
T3: Tumor > 4 cm oder benachbarten Strukturen

T4a: Kieferknochen, Muskelweichteile

T4b: Schädelbasis, A. carotis int., V. jugularis

N-Stadien: klinisch + pathologisch

N0kein LKN11 unilateraler LK \leq 3cmN2a1 unilateraler LK > 3cm - \leq 6cmN2bmultiple ipsilaterale LKs \leq 6cmN2cmultiple bilaterale LKs \leq 6cm


LK > 6cm

UICC

N3

U_U					
Stadium	I	T1	N0		M0
Stadium	II	T2	N0		M0
Stadium	III	T1	N1		M0
		T2	N1		M0
		T3	N0,	N1	M0
Stadium	IVA	T1-3	N2		M0
		T4a	N0-N	12	M0
Stadium	IVB j	edes T	N3		M0
		T4b je	edes	N	M0
Stadium	IVC j	edes T je	edes	N	M1

TNM 8 seit 2017

Fallbeispiel aus dem Tumorboard

- T2 Oropharynxkarzinom
- p16-positiv
- cM0
- N: 1 LK ipsilateral > 6cm im CT Metastasen-suspekt
- ➤ Vorstellungs-TNM: cT2 cN3 cM0
- ➤ TNM bei Radiatio: cT2 cN3 cM0
- ➤ TNM bei OP: pT2 pN1 cM0

T-Stadien

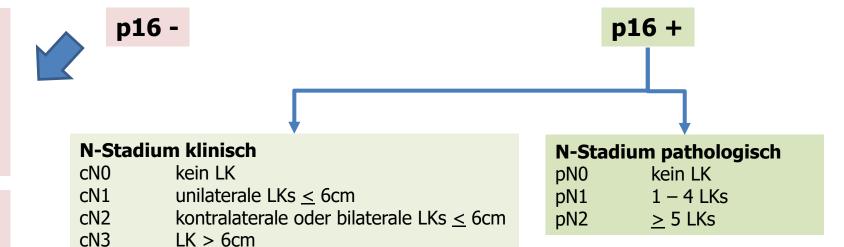
Tis: Carcinoma in situ **T1**: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder benachbarten Strukturen

T4a: Kieferknochen, Muskelweichteile

T4b: Schädelbasis, A. carotis int., V. jugularis


N-Stadien: klinisch + pathologisch

N0 kein LK N1 1 unilateraler LK \leq 3cm N2a 1 unilateraler LK > 3cm - \leq 6cm N2b multiple ipsilaterale LKs \leq 6cm N2c multiple bilaterale LKs \leq 6cm N3 LK > 6cm

UICC

Stadium I	T1	N0	M0	
Stadium II	T2	NO	M0	
Stadium III	T1	N1	M0	
	T2	N1	M0	
	T3	NO, N1	M0	
Stadium IVA	T1-3	N2	M0	
	T4a	N0-N2	M0	
Stadium IVB	jedes T	. N3	M0	
	T4b	jedes N	M0	
Stadium IVC	jedes T	jedes N	M1	

TNM 8 seit 2017

UICC Klinisch

Stadium I	T1,T2	N0,1	M0
Stadium II	T1,T2	N2	M0
	T3	N0,N1,N2	M0
Stadium III	T1-T3	N3	M0
	T4	jedes N	M0
Stadium IV	jedes T	jedes N	M1

UICC Pathologisch

0-00:00:0			
Stadium I	Γ1,T2	N0,1	M0
Stadium II	Г1,Т2	N2	M0
7	Г3, Т4	N0,N1	M0
Stadium III	T3,T4	N2	M0
Stadium IV j	edes T je	des N	M1

Tabelle 5: Oropharynxkarzinom TNM p16-negativ: Definition der TNM-Stadien Einteilung (klinisch und pathologisch identisch; M1 immer St. IVc)

	N0	N1	N2a,b,c	N3a,b
TI	1	III	IVa	IVb
T2	II	III	IVa	IVb
Т3	III	III	IVa	IVb
T4a	IVa	IVa	IVa	IVb
T4b	IVb	IVb	IVb	IVb

Tabelle 4: Oropharynxkarzinom TNM p16-positiv: Definition der klinischen und pathologischen TNM-Stadien Einteilung, incl. unbekanntem Primärtumor (CUP)

cTNM	cN0	cN1	cN2	cN3	pTNM	pN0	pN1	pN2
то	1	1	II	III	то	1	1	II
TI	1	1	II	III	TI	1	1	II
T2	1	1	II	III	T2	1	1	II
Т3	II	II	II	III	Т3	II	II	III
T4	Ш	III	III	III	T4	II	II	III

TNM 8 p16-negativ

S3-Leitlinie Diagnostik, Therapie, Prävention und Nachsorge des Oro- und Hypopharynxkarzinoms

AWMF-Registernummer: 017-082OL

TNM 8 p16-positiv

Tabelle 5: Oropharynxkarzinom TNM p16-negativ: Definition der TNM-Stadien Einteilung (klinisch und pathologisch identisch; M1 immer St. IVc)

	N0	NI	N2a,b,c	N3a,b
TI	I	Ш	IVa	IVb
T2	II	III	IVa	IVb
Т3	III	III	IVa	IVb
T4a	IVa	IVa	IVa	IVb
T4b	IVb	IVb	IVb	IVb

Tabelle 4: Oropharynxkarzinom TNM p16-positiv: Definition der klinischen und pathologischen TNM-Stadien Einteilung, incl. unbekanntem Primärtumor (CUP)

cTNM	cN0	cN1	cN2	cN3	pTNM	pN0	pN1	pN2
то	1	1	II	III	Т0	1	1	II
TI	1	ı	II	III	TI	1	1	II
T2	1	1	II	III	T2	1	1	II
Т3	II	II	II	III	Т3	II	II	Ш
T4	Ш	III	III	III	T4	II	II	III

TNM 8 p16-negativ

S3-Leitlinie Diagnostik, Therapie, Prävention und Nachsorge des Oro- und Hypopharynxkarzinoms

AWMF-Registernummer: 017-082OL

Downstaging bei p16+

in Abhängigkeit des p16-Status

• p16- vs. p16+

TNM 8 p16-positiv

Fallbeispiel:

Oropharynx-CA T1N1M0 p16- vs. p16+

Tabelle 5: Oropharynxkarzinom TNM p16-negativ: Definition der TNM-Stadien Einteilung (klinisch	
und pathologisch identisch; M1 immer St. IVc)	

	N0	N1	N2a,b,c	N3a,b
ті	1	III	IVa	IVb
T2	II	III	IVa	IVb
Т3	III	III	IVa	IVb
T4a	IVa	IVa	IVa	IVb
T4b	IVb	IVb	IVb	IVb

TNM 8 p16-negativ

S3-Leitlinie Diagnostik, Therapie, Prävention und Nachsorge des Oro- und Hypopharynxkarzinoms

version 1.0 - marz 2024 AWMF-Registernummer: 017-0820l

Downstaging bei p16+

in Abhängigkeit der durchgeführten Therapie

Radio(chemo)therapie vs. OP + Adjuvanz

Tabelle 4: Oropharynxkarzinom TNM p16-positiv: Definition der klinischen und pathologischen TNM-Stadien Einteilung, incl. unbekanntem Primärtumor (CUP)

cTNM	cN0	cN1	cN2	cN3	pTNM	pN0	pN1	pN2	F
то	1	1	II	III	то	1	1	Ш	•
TI	1	1	II	III	TI	1	1	Ш	
T2	1	1	II	Ш	T2	1	I .	II	•
Т3	II	II	II	III	Т3	II	II	Ш	7
T4	Ш	Ш	III	III	Т4	II	II	Ш	

TNM 8 p16-positiv

Fallbeispiel:

- T2 Oropharynxkarzinom
- p16-positiv
- cM0
- N: 1 LK ipsilat. > 6cm im CT Metastasen-suspekt
- ➤ Vorstellungs-TNM: cT2 cN3 cM0
- TNM bei Radiatio: cT2 cN3 cM0
- TNM bei OP: pT2 pN1 cM(

Tabelle 5: Oropharynxkarzinom TNM p16-negativ: Definition der TNM-Stadien Einteilung (klinisch und pathologisch identisch; M1 immer St. IVc)

TNM	8	p16-negativ
-----	---	-------------

	N0	N1	N2a,b,c	N3a,b
TI	1	III	IVa	IVb
T2	II	III	IVa	IVb
Т3	III	III	IVa	IVb
T4a	IVa	IVa	IVa	IVb
T4b	IVb	IVb	IVb	IVb

Downstaging bei p16+

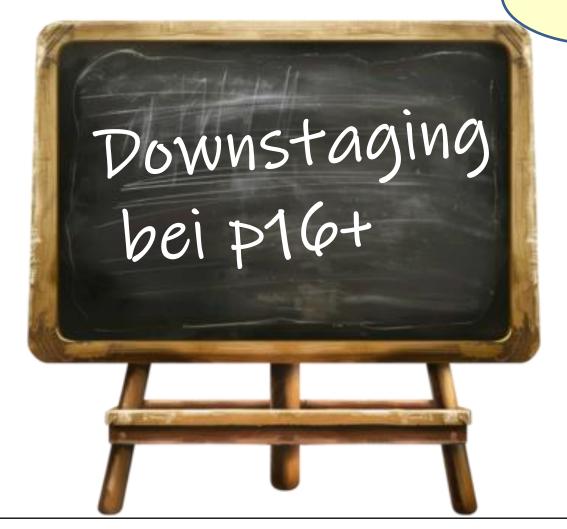
in **Abhängigkeit des p16-Status** und der **durchgeführten Therapie**

- p16- vs. p16+
- Radio(chemo)therapie vs. OP + Adjuvanz

Tabelle 4: Oropharynxkarzinom TNM p16-positiv: Definition der klinischen und pathologischen TNM-Stadien Einteilung, incl. unbekanntem Primärtumor (CUP)

cTNM	cN0	cN1	cN2	cN3	pTNM	pN0	pN1	pN2
то	1	1	II	Ш	то	1	1	II
TI	1	1	II	Ш	TI	1	1	II
T2	1	1	II	Ш	T2	1	1	II
Т3	II	II	II	Ш	Т3	II	II	III
T4	Ш	III	III	Ш	Т4	II	II	Ш

TNM 8 p16-positiv


Fallbeispiel:

Oropharynx-CA T2N2cM0
Je 1LK bilateral

TNM bei HPV-assoziierten Oropharynxkarzinomen

TNM bei HPV-assoziierte

Könnte das einen tieferen Hintergrund haben?

TNM 9 ab 01/2026

TNM 9

T-Stadien

T0: Kein Primärtumor aber p16-positive / HPV-assoziierte Halsmetastase (CUP)

T1: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder Ausbreitung zur lingualen Fläche der Epiglottis

T4: Tumor infiltriert eine der folgenden Nachbarstrukturen: Larynx, äußere Muskulatur der Zunge (M. genioglossus, M. hyoglossus, M. palatoglossus, M. styloglossus). M. pterygoideus medialis oder lateralis, harter Gaumen, Unterkiefer, Lamina medialis oder lateralis des Processus pterygoideus, Nasopharynx, Schädelbasis oder Umschließen der A. carotis interna

cTNM = pTNM

TNM9 Oropharynx p16+

T-Stadien

T0: Kein Primärtumor aber p16-positive / HPV-assoziierte Halsmetastase (CUP)

T1: Tumor ≤ 2 cm

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder Ausbreitung zur lingualen Fläche der Epiglottis

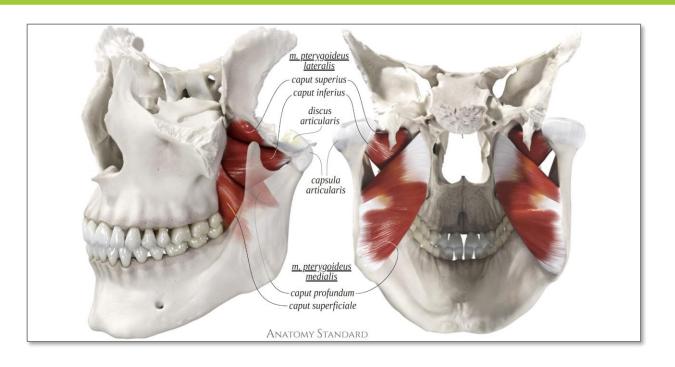
T4: Tumor infiltriert eine der folgenden Nachbarstrukturen: Larynx, äußere Muskulatur der Zunge (M. genioglossus, M. hyoglossus, M. palatoglossus, M. styloglossus). M. pterygoideus medialis oder lateralis, harter Gaumen, Unterkiefer, Lamina medialis oder lateralis des Processus pterygoideus, Nasopharynx, Schädelbasis oder Umschließen der A. carotis interna

TNM9 Oropharynx p16-

T-Stadien

T0: Kein Primärtumor aber p16-positive / HPV-assoziierte Halsmetastase (CUP)

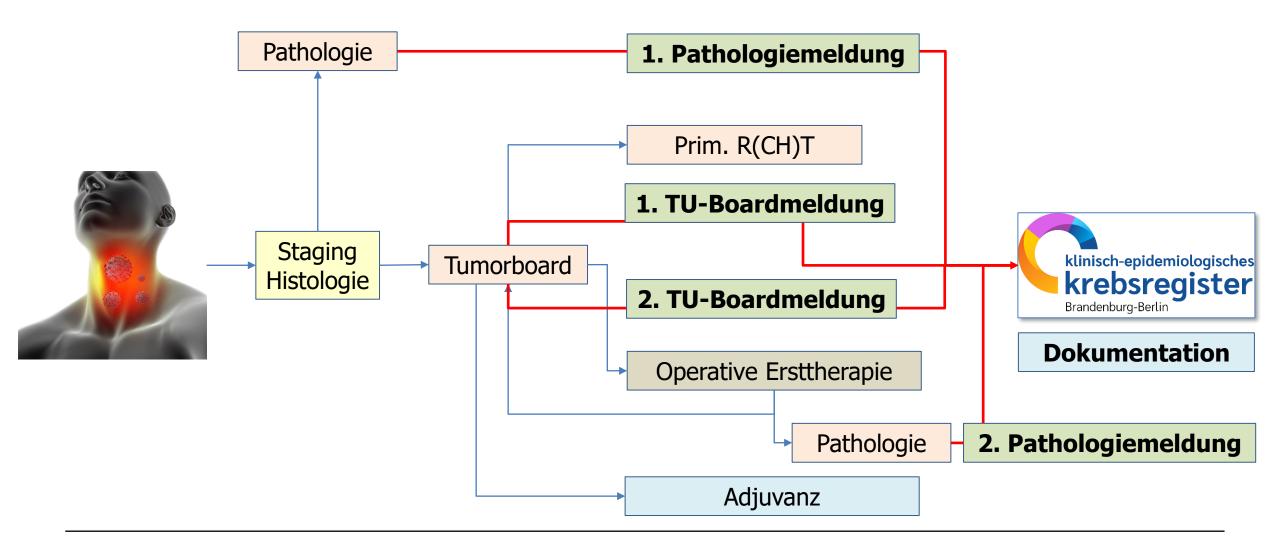
T1: Tumor ≤ 2 cm

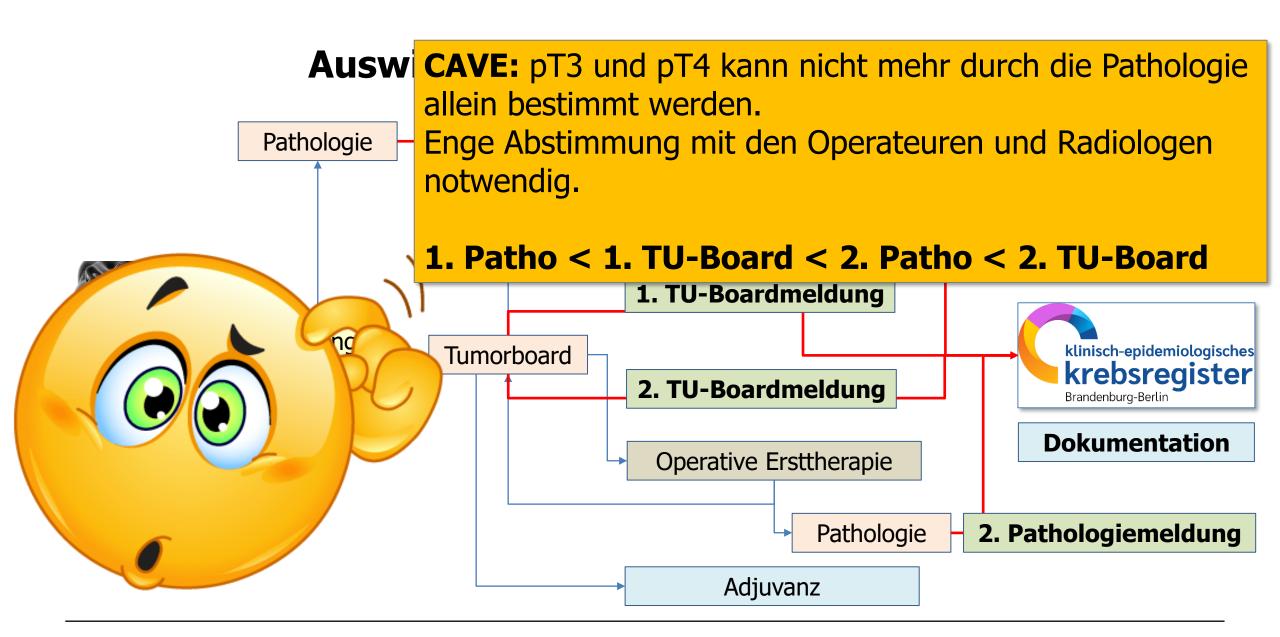

T2: Tumor > 2 cm und ≤ 4 cm

T3: Tumor > 4 cm oder Ausbreitung zur lingualen Fläche der Epiglottis

T4a: Tumor infiltriert eine der folgenden Nachbarstrukturen: Larynx, äußere Muskulatur der Zunge (M. genioglossus, M. hyoglossus, M. palatoglossus, M. styloglossus), Lamina medialis des Processus pterygoideus, harter Gaumen, Unterkiefer

T4b: Tumor infiltriert eine der folgenden Nachbarstrukturen: M. pterygoideus lateralis, Lamina lateralis des Processus pterygoideus, Nasopharynx, Schädelbasis oder Umschließen der A. carotis interna




Euch auf TNM 9 vor. CAVE: pT3 und pT4 kann nicht mehr durch die Pathologie allein bestimmt werden.

Enge Abstimmung mit den Operateuren und Radiologen notwendig.

Medizinische Universität **Lausitz** – Carl Thiem

Auswirkung auf die Dokumentation

N-Status

Das ist aber noch nicht das Ende...

N-Status

TNM 8

N-Stadium klinisch

cN0 kein LK

cN1 unilaterale LKs ≤ 6cm

cN2 kontralaterale oder bilaterale LKs < 6cm

cN3 LK > 6cm

N-Stadium pathologisch

pN0 kein LK pN1 1-4 LKs pN2 ≥ 5 LKs

TNM 9

cN0 kein LK

cN1 Metastase(n) in <u>ipsi</u>lateralen Lymphknoten ≤ 6 cm

ohne eindeutigen Nachweis in der Bildgebung und / oder

extranodale Ausbreitung

cN2 Metastase(n) in <u>ipsi</u>lateralen Lymphknoten ≤ 6 cm

<u>mit</u> eindeutigen Nachweis in der Bildgebung und / oder

extranodale Ausbreitung

oder

Metastase(n) in <u>contra</u>lateralen Lymphknoten ≤ 6 cm

ohne eindeutigen Nachweis in der Bildgebung und / oder

extranodale Ausbreitung

pN3 Metastase(n) in Lymphknoten \leq 6 cm

oder

contra- oder bilaterale Metastasen mit eindeutigen

Nachweis in der Bildgebung und / oder extranodale

Ausbreitung

N-Stadien: p16 + pathologisch

pN0 kein LK

pN1 Metastase(n) in bis zu 4 Lymphknoten <u>ohne</u> pathologisch

gesicherte extranodale Ausbreitung

pN1a Metastase(n) in 1 Lymphknoten <u>ohne</u> pathologisch

gesicherte extranodale Ausbreitung

pN1b Metastase(n) in 2 bis 4 Lymphknoten ohne

pathologisch gesicherte extranodale

Ausbreitung

pN2 Metastase(n) in bis zu 4 Lymphknoten mit pathologisch

gesicherter extranodaler Ausbreitung oder Metastasen in

<u>5 oder mehr</u> Lymphknoten <u>ohne</u> gesicherte extranodale

Ausbreitung

pN3 Metastasen in <u>5 oder mehr</u> Lymphknoten <u>mit</u> gesicherter

extranodale Ausbreitung

TNM 9

Beispiel:

Oropharynx-CA T1N3M0

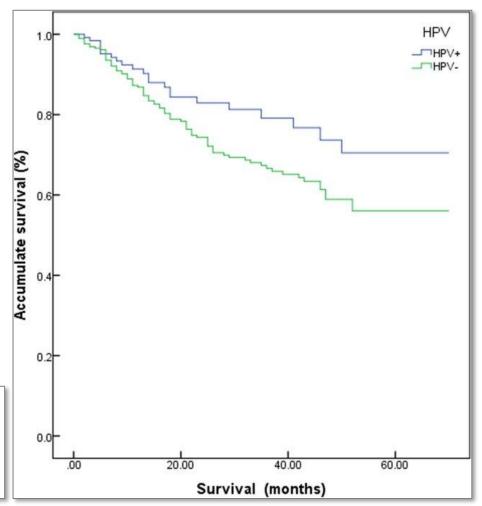
III

II

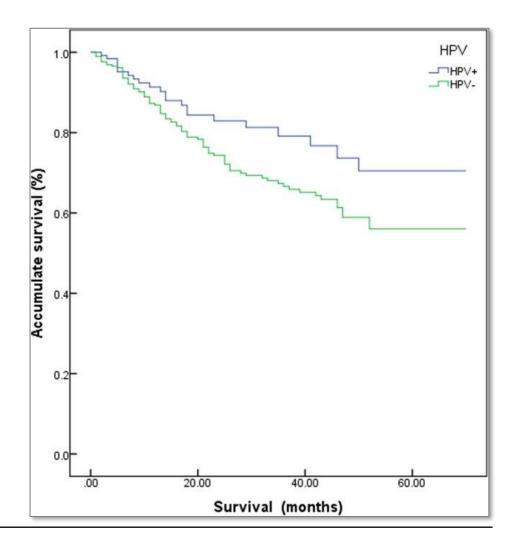
p16-			
UICC I	T1	N0	M0
UICC II	T2	N0	M0
UICC III	Т3	N0	M0
	T1, T2, T3	N1	M0
UICC IVa	T1, T2, T3	N2	M0
	T4a	N0, N1, N2	M0
UICC IVb	T4b	Jedes N	M0
	Jedes T	N3	M0
UICC IVc	Jedes T	Jedes N	M1

p16+ klinisch			
UICC I	T0, T1, T2	N0, N1	M0
UICC II	T0, T1, T2	N2	M0
	T3	N0, N1, N2	M0
UICC III	Jedes T	N3	M0
	T4	Jedes N	M0
UICC IV	Jedes T	Jedes N	M1
p16+ pathologisch			
UICC I	T0, T1, T2	N0, N1a, N1b	M0
UICC II	T0, T1, T2	N2, N3	M0
	Т3	N0, N1a, N1b, N2	M0
UICC III	Т3	N3	M0
	T4	Jedes N	M0
UICC IV	Jedes T	Jedes N	M1

Agenda


- p16-positive Oropharynxkarzinome im Wandel der TNM-Klassifikationen
- Deeskalation bei p16-positive Oropharynxkarzinomen
- Untersuchung zur chirurgischen Deeskalation auf Basis einer retrospektiven Datenanalyse

Hintergrund


- HPV-assoziierte Oropharynxkarzinome (p16+) haben eine bessere Prognose im Vergleich zu nicht HPV-assoziierten Karzinomen (p16-).
 - Besseres Gesamtüberleben
 - Bessere lokale Tumorkontrolle
 - Unabhängig von der angewandten Therapie

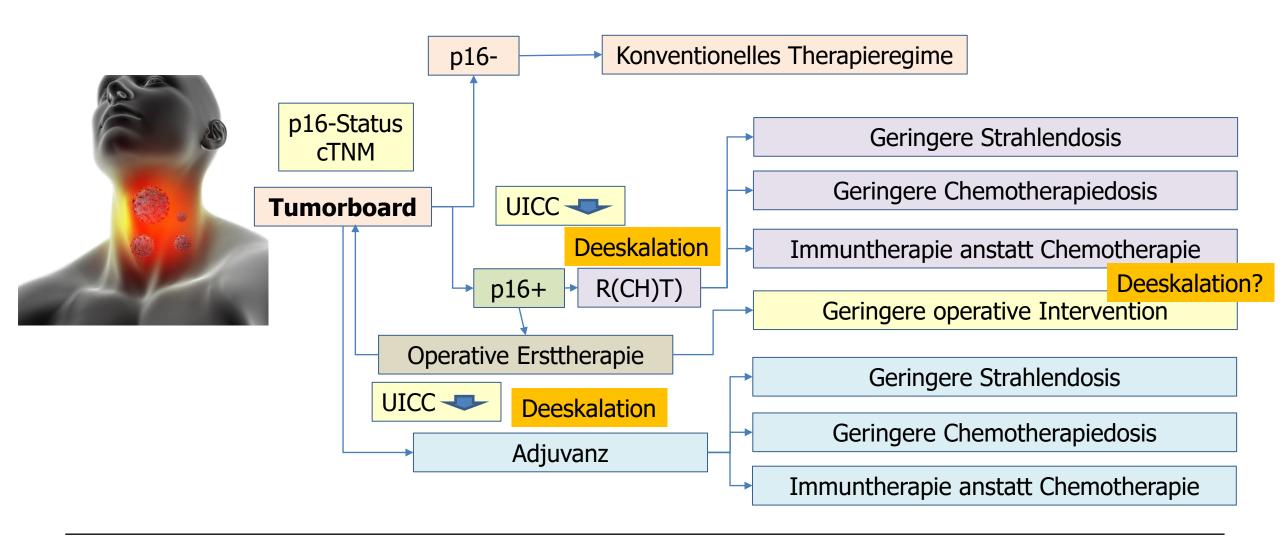
Die Idee der Deeskalation:

Weniger Therapienebenwirkungen durch schonendere Therapieformen mit Verbesserung der Lebensqualität bei bleibendem Überlebensvorteil

Downstaging

- Seit TNM8 Unterscheidung zwischen p16-positiven und p16-negativen Tumoren -Downstaging
- Weiteres Downstaging bei TNM9

Deeskalation


Änderung von TNM und UICC Stadien in Abhängigkeit des p-16-Status

- Stadienänderung vor Beginn der Tumortherapie
 - ➤Ändert sich die Therapie in Abhängigkeit des Stadiums?

Änderung von TNM und UICC Stadien bei p16+ in Abhängigkeit der Therapie

- Stadienänderung nach operativer Ersttherapie
 - ➤Ändert sich das Adjuvanzregime (R(CH)T) in Abhängigkeit des Stadiums?

Flussdiagramm

Stand der Deeskalation bei p16+

Current Oncology Reports (2025) 27:355-361 https://doi.org/10.1007/s11912-025-01652-8

REVIEW

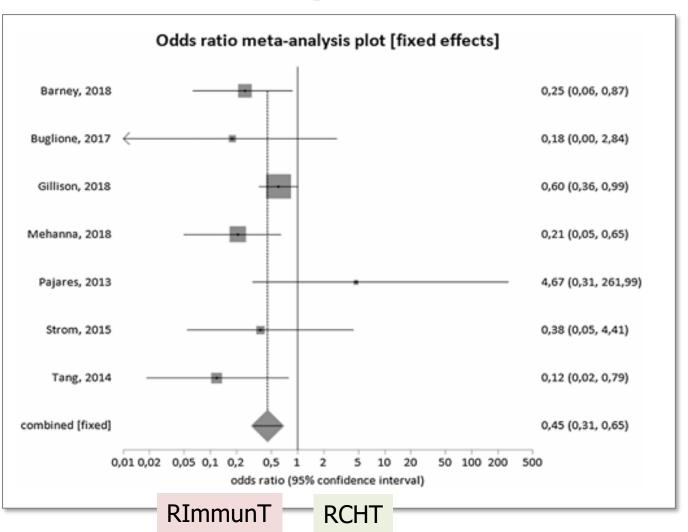
De-escalation for Human Papillomavirus-Positive Oropharyngeal Cancer: A Look at the Prospective Evidence

Allen M. Chen1

	Intent	Trial	Institution	Trial design (sample size)	RT details	Primary endpoint
	RT, CRT, or SBRT	NCT04900623	Dana Farber	Phase II (n=145)	RT 70 Gy/35 vs de-escalated dose (NS)±chemo based on circulating HPV/DNA	2-year PFS
		NCT03799445	MDACC	Phase II (n = 180)	RT 55-60 Gy/30 (reduced field) with concurrent ipilimumab + nivolumab	2-year PFS
		NCT05600842	UC Irvine	Phase II (n=111)	RT 60 Gy/30 (6 fractions per week) with chemo in select patients	2-year PFS
		NCT03215719	NYU	Phase II (n=144)	CRT 70 Gy/35 vs de-escalated dose with concurrent cisplatin	2-year PFS
r	n. R(CH)T	Duke	Phase II (n=120)	CRT 70 Gy/35 vs de-escalated dose based on mid treatment response in lymph nodes	2-year PFS
	•		MSKCC	Phase II (n=121)	CRT 30 Gy/15 with various chemo regi- mens incorporating hypoxia	2-year LRC
		NCT03323463	MSKCC	Phase II (n=316)	CRT 70 Gy/35 vs CRT 30 Gy/15 based on hypoxia	2-year LRC
		NCT03416153	Michigan	Phase II (n=75)	CRT 70 Gy/35 vs CRT 54 Gy with con- current carboplatin and taxol	1-year LRC
		NCT03952585	NRG Oncology	Phase II (n=711)	CRT 70 Gy/35 vs nivolumab+RT 60 Gy/30	6-year PFS
		NCT04178174	Montreal	Phase II (n=106)	SBRT (14 Gy/3)+40 Gy/20 with concur- rent cisplatin versus CRT 70 Gy/33	2-year LRC
	Induction chemo	NCT04867330	Fudan	Phase II (n=46)	Induction chemo (toripalimab+doc- etaxel+cisplatin); CRT 70 Gy/35 with cisplatin vs RT 60 Gy/30	2-year PFS
		NCT04572100	U-Chicago	Phase I (n = 50)	Induction chemo (paclitaxel+carboplatin) followed by TORS or RT or CRT	HPV-DNA 20 weeks
d	uktio	nsther	apie	Phase I/II (n=98)	Induction chemo (paclitaxel+carbopl- atin) with tumor vaccines followed by TORS or CRT	2-year DLT and 2-year RI
		NCT02945631	Mount Sinai	Phase II (n=50)	Induction chemo; CRT 56 Gy/28 vs CRT 50.4 Gy/28	3-year PFS
		NCT04277858	McGill	Phase II (n=60)	Induction docetaxel + cisplatin followed by TORS ± PORT	2-year PFS
	PORT	NCT03396718	Dresden	Phase I (n = 384)	Multiple PORT regimens including 48.5–55 Gy	2-year LRC
		NCT04920344	Rutgers	Phase II (n=40)	PORT 50 Gy/25 vs PORT 60 Gy/30	MDADI at 2 months
		NCT05119036	Indiana	Phase II (n=75)	PORT 54 Gy/27 vs PORT 44 Gy/22	2-year DFS
	L 00	NCT03729518	Pennsylvania	Phase II (n = 150)	TORS alone or TORS+reduced volume PORT 50 Gy/25	2-year LRC
S	t-OP-	-Therap	oie	Phase I (n=45)	TORS+standard PORT vs reduced volume PORT	2-year LC
		NCT03875716	Dana Farber	Phase II (n=111)	PORT 60 Gy vs PORT 46 Gy vs observa- tion	2-year DFS
		NCT04502407	Cedars Sinai	Phase II (n=40)	PORT with cisplatin: 50 Gy/25 vs 30 Gy/15	2-year PFS
		NCT02215265	PATHOS	Phase III (n = 1100)	Low risk: No PORT; Int Risk PORT 60 Gy/30 vs PORT 50Gy/25; High Risk: PORT 60Gy/30 vs 60Gy/30 with cisplatin	1-year MDADI/OS

Stand der Deeskalation bei p16+

European Archives of Oto-Rhino-Laryngology (2019) 276:1275–1281 https://doi.org/10.1007/s00405-019-05387-8


REVIEW ARTICLE

Cisplatin-based chemoradiotherapy vs. cetuximab-based bioradiotherapy for p16-positive oropharyngeal cancer: an updated meta-analysis including trials RTOG 1016 and De-ESCALaTE

Petar Suton¹ · Marko Skelin² · Zoran Rakusic³ · Stjepan Dokuzovic⁴ · Ivica Luksic⁵

2-Jahres-Überleben

RCHT > RImmunT

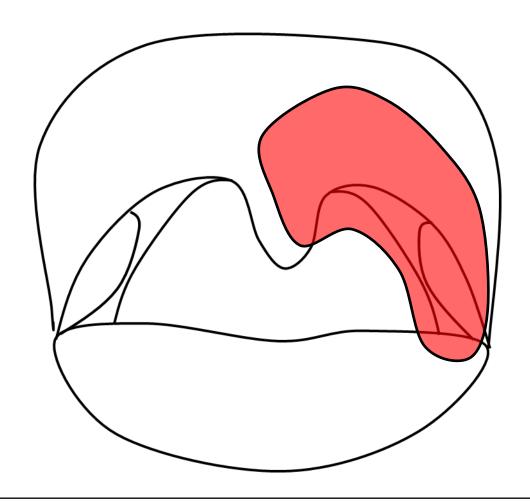
Deeskalation durch Downsizing

Reduktion der Tumorgröße durch neoadjuvante Behandlung

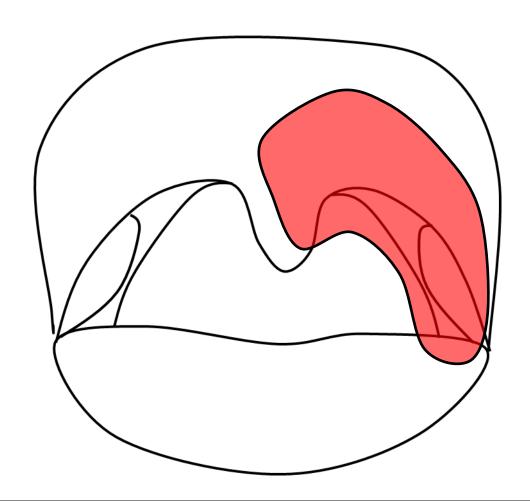
- Keine Änderung des initialen Tumorstadiums (TNM, UICC)
- Neoadjuvanz bisher systemisch (Immun, Chemo) und radiotherapeutisch
- Bei (partieller) Remission durch neoadjauvante Therapie Änderung des radioonkologischen Folgeregimes

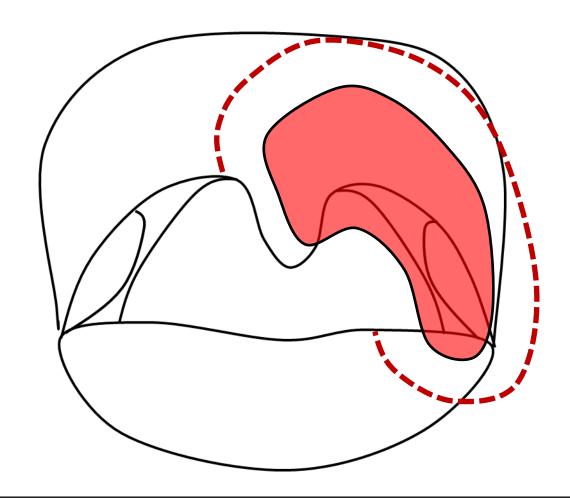
Deeskalation durch Downsizing

Reduktion der Tumorgröße durch neoadjuvante Behandlung

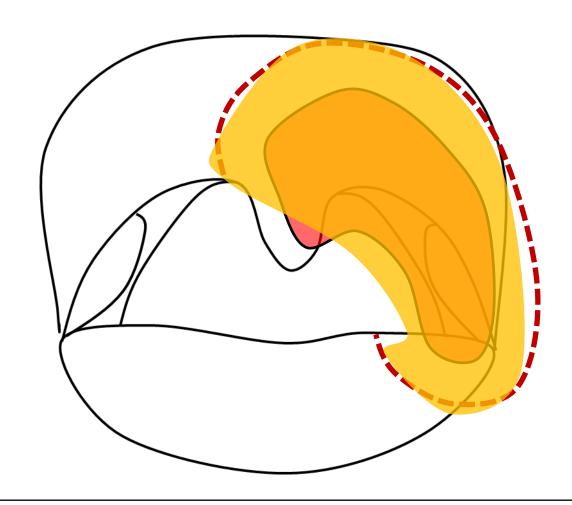

- Keine Änderung des initialen Tumorstadiums (TNM, UICC)
- Neoadjuvanz bisher systemisch (Immun, Chemo) und radiotherapeutisch
- Bei (partieller) Remission durch neoadjauvante Therapie Änderung des radioonkologischen Folgeregimes
- Bisher keine Deesakaltion eines chirurgischen Konzeptes

Agenda

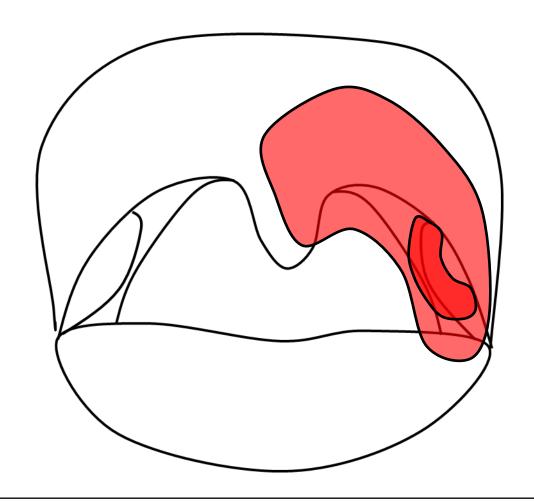

- p16-positive Oropharynxkarzinome im Wandel der TNM-Klassifikationen
- Deeskalation bei p16-positive Oropharynxkarzinomen
- Untersuchung zur chirurgischen Deeskalation auf Basis einer retrospektiven Datenanalyse


Oropharynxkarzinom links

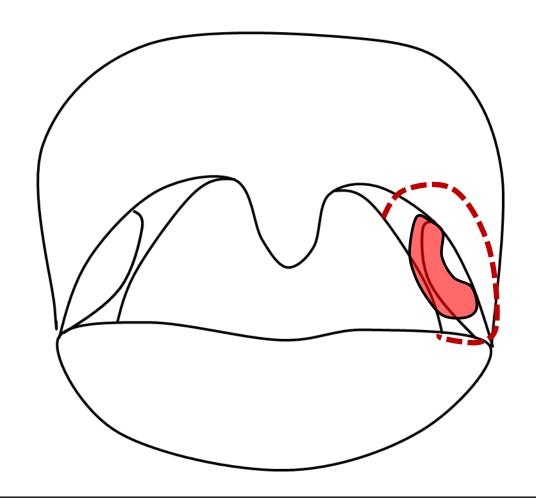
- Lokalisation:
 - Tonsille
 - weicher Gaumen


Oropharynxkarzinom links

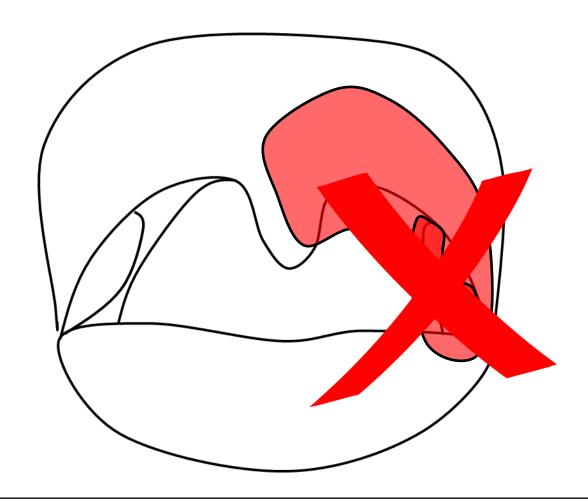
- Lokalisation:
 - Tonsille
 - weicher Gaumen
- Resektion
 - Sicherheitsabstand >5mm


Oropharynxkarzinom links

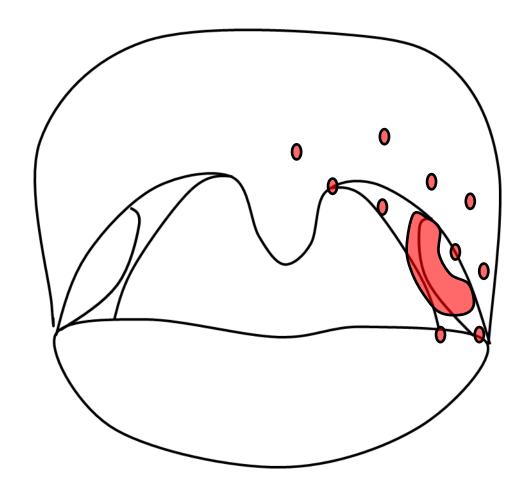
- Lokalisation:
 - Tonsille
 - weicher Gaumen
- Resektion
 - Sicherheitsabstand >5mm
- Rekonstruktion
 - Freies Transplantat
 - Sensibilitätsverlust
 - Motilitätverlust
 - Stenose
 - Retronasale Penetration
 - Nasaler Stimmklang

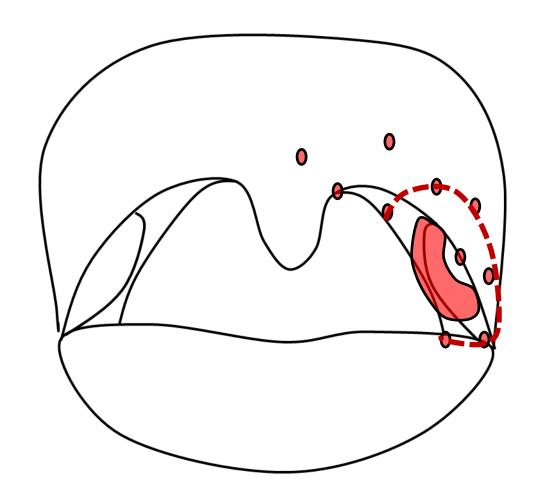

Downsizing

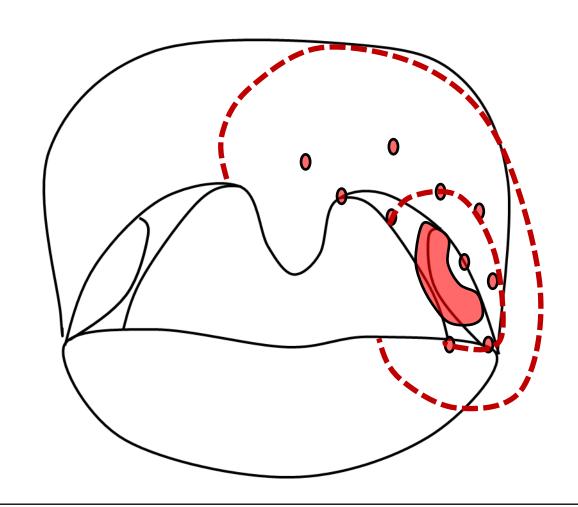
- Neoadjuvante Therapie
 - Immun
 - Chemo
 - Radiatio



Downsizing


- Neoadjuvante Therapie
 - Immun
 - Chemo
 - Radio
- Reduktion des Resektionsareals
 - Geringe Funktionsausfälle


- Keine zentripetale Größenreduktion
 - Tonsille
 - weicher Gaumen


- Keine zentripetale Größenreduktion
 - Tonsille
 - weicher Gaumen
- Persistierende Tumorinseln

- Keine zentripetale Größenreduktion
 - Tonsille
 - weicher Gaumen
- Persistierende Tumorinseln
- Resektion in den "neuen" Grenzen
 - Verbleibende Tumorinseln
 - = R1-Resektion

- Keine zentripetale Größenreduktion
 - Tonsille
 - weicher Gaumen
- Persistierende Tumorinseln
- Resektion in den "neuen" Grenzen
 - Verbleibende Tumorinseln
 - = R1-Resektion
- R0-Resektion ist stärkster prognostischer Faktor für Überleben / lokale Tumorkontrolle
- Resektion in den "alten" Grenzen
- Kein Downsizing
- Keine chirurgische Deeskalation

Überlegung zur chirurgischen Deeskalation

Prämisse:

P16+ Oropharynxkarzinome haben ein gutes Therapieansprechen

- Downsizing durch neoadjuvante Therapie
- Resektion in den neuen Grenzen
 - Bewusstes Inkaufnehmen einer R1-Situation
 - Geringere Funktionseinschränkung
- Therapie der R1-Tumorperipherie durch adjuvanten Therapie (R(CH)T)

Potentielles Ergebnis:

Gleiches Gesamtüberleben / lokale Tumorkontrolle im Vergleich zu p16-

HPV-assoziierte Oropharynxkarzinome – es bleibt schwierig

